3D single molecule tracking of quantum-dot labeled antibody molecules using multifocal plane microscopy.
نویسندگان
چکیده
Single molecule tracking in three dimensions (3D) in a live cell environment promises to reveal important new insights into cell biological mechanisms. However, classical microscopy techniques suffer from poor depth discrimination which severely limits single molecule tracking in 3D with high temporal and spatial resolution. We introduced a novel imaging modality, multifocal plane microscopy (MUM) for the study of subcellular dynamics in 3D. We have shown that MUM provides a powerful approach with which single molecules can be tracked in 3D in live cells. MUM allows for the simultaneous imaging at different focal planes, thereby ensuring that trajectories can be imaged continuously at high temporal resolution. A critical requirement for 3D single molecule tracking as well as localization based 3D super-resolution imaging is high 3D localization accuracy. MUM overcomes the depth discrimination problem of classical microscopy based approaches and supports high accuracy 3D localization of singe molecule/particles. In this way, MUM opens the way for high precision 3D single molecule tracking and 3D super-resolution imaging within a live cell environment. We have used MUM to reveal complex intracellular pathways that could not be imaged with classical approaches. In particular we have tracked quantum dot labeled antibody molecules in the exo/endocytic pathway from the cell interior to the plasma membrane at the single molecule level. Here, we present a brief review of these results.
منابع مشابه
3D single molecule tracking in thick cellular specimens with multifocal plane microscopy
Intracellular Protein trafficking represents a fundamental process that is important for the normal functioning of the cell. The study of protein transport merits the use of single molecule imaging approaches, as it enables the analysis of the individual transport pathways that is not feasible through conventional imaging techniques. However, 3D single molecule tracking poses several challenges...
متن کاملAn information-theoretic approach to designing the plane spacing for multifocal plane microscopy.
Multifocal plane microscopy (MUM) is a 3D imaging modality which enables the localization and tracking of single molecules at high spatial and temporal resolution by simultaneously imaging distinct focal planes within the sample. MUM overcomes the depth discrimination problem of conventional microscopy and allows high accuracy localization of a single molecule in 3D along the z-axis. An importa...
متن کاملRemote focusing multifocal plane microscopy for the imaging of 3D single molecule dynamics with cellular context.
Three-dimensional (3D) single molecule fluorescence microscopy affords the ability to investigate subcellular traffcking at the level of individual molecules. An imaged single molecule trajectory, however, often reveals only limited information about the underlying biological process when insuffcient information is available about the organelles and other cellular structures with which the mole...
متن کاملSingle-Molecule Tracking in Living Cells Using Single Quantum Dot Applications
Revealing the behavior of single molecules in living cells is very useful for understanding cellular events. Quantum dot probes are particularly promising tools for revealing how biological events occur at the single molecule level both in vitro and in vivo. In this review, we will introduce how single quantum dot applications are used for single molecule tracking. We will discuss how single qu...
متن کاملCellular Imaging at the Nanoscale: Poster Abstract Booklet
#1: Wavelength and pH Dependent Detection of Homocysteine #2: Synthesis and Characterization of Photoswitchable Fluorophores for Multispectral Super Resolution Microscopy #3: Ligand Deployment and Sensing in a Large, 3‐D Extracellular Space #4: Multi‐photon Excitation and Characterization of Novel Fluorophores for Cellular Imaging #5: New Fluorescent Probes for Visualizing Autophagy #6: Fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of SPIE--the International Society for Optical Engineering
دوره 7575 شماره
صفحات -
تاریخ انتشار 2010